Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
J Virol ; : e0036324, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661384

RESUMO

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.

2.
Vaccines (Basel) ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543956

RESUMO

This study explored the optimum immunization schedule for the quadrivalent influenza split-virion vaccine containing influenza A strains (H1N1 and H3N2) and B lineage strains (Yamagata and Victoria) in children aged 3-8 years. The 652 participants enrolled were divided into two groups based on a history of influenza immunization (IH group) or no history of influenza immunization (NH group). The groups were administered a two-dose immunization schedule on days 0 and 30. In the NH group, on day 30 after the first dose, the positive rates of influenza hemagglutination-inhibition antibodies of strains H1N1, H3N2, BV, and BY were 85.85%, 71.70%, 65.27% and 60.45%, respectively. The positive rates of BV and BY failed to meet the absolute criteria for evaluating the immunogenicity of influenza vaccine in the population aged 3-60 years (for each strain antibody). On day 30 after the second dose, HI antibodies to strains H1N1, H3N2, BV, and BY met the immunogenicity acceptable criteria. In the IH group, on day 30 after the first dose, HI antibodies to strains H1N1, H3N2, BV, and BY met the acceptable criteria for immunogenicity. The incidence rates of adverse reactions (vaccine-related adverse events) from the first dose up until 30 days after the second dose were 20.80% in the IH group and 19.50% in the NH group. Only two Grade 3 adverse reactions (fever: temperature ≥ 39.5 °C, swelling: area ≥ 50% of the injection site area) occurred in the IH group, and no Grade 3 adverse reactions occurred in the NH group. No serious adverse reactions occurred in either group. We conclude that for the NH group, two doses of quadrivalent influenza vaccine should be administered, and for the IH group, a one-dose regimen is acceptable.

3.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38546099

RESUMO

Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.


Assuntos
Glicosídeos Cardíacos , Poxviridae , Vaccinia , Humanos , Vírus Vaccinia/genética , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/metabolismo , Replicação Viral
4.
Vaccine ; 42(9): 2463-2474, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38472067

RESUMO

Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, ß-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.


Assuntos
Compostos de Alúmen , Enterovirus Humano D , Infecções por Enterovirus , Polissorbatos , Esqualeno , Humanos , Criança , Animais , Camundongos , Anticorpos Antivirais , Vacinas de Produtos Inativados , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos
5.
Microorganisms ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543571

RESUMO

HSV-1 major tegument protein VP22 is present in multiple subcellular locations in the late stages of productive viral infection. We initially performed a detailed time course experiment and observed that VP22 was detected in nuclear and nuclear matrix fractions as early as 4 hpi. The goal was to determine the fate of virion-derived incoming VP22, and we report the following: (i) VP22 was detected in nuclear matrix fractions 1 hpi. (ii) In the presence of cycloheximide (CHX), VP22 was present in the nuclear matrix 1-6 hpi, demonstrating the stability of the protein. (iii) The nuclear matrix targeting of VP22 occurred in infected Vero, HEp-2, and human mammary epithelial (HME) cells and following synchronized infection. Based on these results, we conclude that (iv) VP22 targets the nuclear matrix and chromatin upon entry into cells during productive HSV-1 infection.

6.
Hum Vaccin Immunother ; 20(1): 2322196, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38448394

RESUMO

Enhanced Passive Safety Surveillance (EPSS) was conducted for quadrivalent inactivated split-virion influenza vaccines (IIV4) in Germany (high dose [HD]) and Finland (standard dose [SD]) for the northern hemisphere (NH) 2022/23 influenza season. The primary objective was to assess adverse events following immunization (AEFI) occurring ≤7 days post-vaccination. In each country, the EPSS was conducted at the beginning of the NH influenza season. Exposure information was documented using vaccination cards (VC), and AEFI were reported via an electronic data collection system or telephone. AEFI were assessed by seriousness and age group (Finland only). The vaccinee reporting rate (RR) was calculated as the number of vaccinees reporting ≥ 1 AEFI divided by the total vaccinees. In Germany, among 1041 vaccinees, there were 31 AEFI (ten vaccinees) during follow-up, including one serious AEFI. Of 16 AEFI (six vaccinees) with reported time of onset, 15 occurred ≤7 days post-vaccination (RR 0.58%, 95% confidence interval [CI] 0.21, 1.25), which was lower than the 2021/22 season (RR 1.88%, 95% CI: 1.10, 3.00). In Finland, among 1001 vaccinees, there were 142 AEFI (51 vaccinees) during follow-up, none of which were serious. Of 133 AEFI (48 vaccinees) with time of onset reported, all occurred ≤7 days post-vaccination (RR 4.80%, 95% CI: 3.56, 6.31), which was similar to the 2021/22 season (RR 4.90%, 95% CI: 3.65, 6.43). The EPSS for HD-IIV4 and for SD-IIV4 in the 2022/23 influenza season did not suggest any clinically relevant changes in safety beyond what is known/expected for IIV4s.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Finlândia/epidemiologia , Alemanha/epidemiologia , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Vacinas Combinadas
7.
Int J Biol Macromol ; 265(Pt 1): 130847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490381

RESUMO

Getah virus (GETV) belongs to the Alphavirus genus in the Togaviridae family and is a zoonotic arbovirus causing disease in both humans and animals. The capsid protein (CP) of GETV regulates the viral core assembly, but the mechanism underlying this process is poorly understood. In this study, we demonstrate that CP undergoes liquid-liquid phase separation (LLPS) with the GETV genome RNA (gRNA) in vitro and forms cytoplasmic puncta in cells. Two regions of GETV gRNA (nucleotides 1-4000 and 5000-8000) enhance CP droplet formation in vitro and the lysine-rich Link region of CP is essential for its phase separation. CP(K/R) mutant with all lysines in the Link region replaced by arginines exhibits improved LLPS versus wild type (WT) CP, but CP(K/E) mutant with lysines substituted by glutamic acids virtually loses condensation ability. Consistently, recombinant virus mutant with CP(K/R) possesses significantly higher gRNA binding affinity, virion assembly efficiency and infectivity than the virus with WT-CP. Overall, our findings provide new insights into the understanding of GETV assembly and development of new antiviral drugs against alphaviruses.


Assuntos
Alphavirus , Animais , Humanos , Alphavirus/genética , Alphavirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , RNA Viral/genética , RNA Guia de Sistemas CRISPR-Cas , Genômica , Vírion/genética
8.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338659

RESUMO

Vaccinia virus (Orthopoxvirus) F17 protein is a major virion structural phosphoprotein having a molecular weight of 11 kDa. Recently, it was shown that F17 synthesised in infected cells interacts with mTOR subunits to evade cell immunity and stimulate late viral protein synthesis. Several years back, we purified an 11 kDa protein that inhibited protein synthesis in reticulocyte lysate from virions, and that possesses all physico-chemical properties of F17 protein. To investigate this discrepancy, we used defective vaccinia virus particles devoid of the F17 protein (designated iF17- particles) to assess their ability to inhibit protein synthesis. To this aim, we purified iF17- particles from cells infected with a vaccinia virus mutant which expresses F17 only in the presence of IPTG. The SDS-PAGE protein profiles of iF17- particles or derived particles, obtained by solubilisation of the viral membrane, were similar to that of infectious iF17 particles. As expected, the profiles of full iF17- particles and those lacking the viral membrane were missing the 11 kDa F17 band. The iF17- particles did attach to cells and injected their viral DNA into the cytoplasm. Co-infection of the non-permissive BSC40 cells with a modified vaccinia Ankara (MVA) virus, expressing an mCherry protein, and iF17- particles, induced a strong mCherry fluorescence. Altogether, these experiments confirmed that the iF17- particles can inject their content into cells. We measured the rate of protein synthesis as a function of the multiplicity of infection (MOI), in the presence of puromycin as a label. We showed that iF17- particles did not inhibit protein synthesis at high MOI, by contrast to the infectious iF17 mutant. Furthermore, the measured efficiency to inhibit protein synthesis by the iF17 mutant virus generated in the presence of IPTG, was threefold to eightfold lower than that of the wild-type WR virus. The iF17 mutant contained about threefold less F17 protein than wild-type WR. Altogether these results strongly suggest that virion-associated F17 protein is essential to mediate a stoichiometric inhibition of protein synthesis, in contrast to the late synthesised F17. It is possible that this discrepancy is due to different phosphorylation states of the free and virion-associated F17 protein.


Assuntos
Vírus Vaccinia , Vaccinia , Humanos , Vírus Vaccinia/genética , Vaccinia/genética , Isopropiltiogalactosídeo , Linhagem Celular , Fosfoproteínas , Vírion/genética
9.
JHEP Rep ; 6(1): 100961, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192534

RESUMO

Background & Aims: Hepatitis D virus (HDV) is the causative agent of chronic hepatitis delta, the most severe form of viral hepatitis. HDV encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus, which confer regulatory roles that are distinct from those of S-HDAg. Notably, these residues are divergent between different genotypes. We aimed to elucidate the molecular determinants within the C-termini that are essential for the regulatory role of L-HDAg in HDV replication and assembly. Methods: Northern blot, reverse-transcription quantitative PCR, and a newly established HDV trans-complementary system were used in this study. Results: C-termini of L-HDAg, albeit with high sequence variation among different genotypes, are interchangeable with respect to the trans-inhibitory function of L-HDAg and HDV assembly. The C-terminus of L-HDAg features a conserved prenylation CXXQ motif and is enriched with proline and hydrophobic residues. Abolishment of the CXXQ motif attenuated the inhibitory effect of L-HDAg on HDV replication. In contrast, the enrichment of proline and hydrophobic residues per se does not modify the trans-inhibitory function of L-HDAg. Nevertheless, these residues are essential for HDV assembly. Mechanistically, prolines and hydrophobic residues contribute to HDV assembly via a mode of action independent of the prenylated CXXQ motif. Conclusions: Within the C-terminus of L-HDAg, the CXXQ motif and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly. This intrinsic viral regulatory mechanism we elucidated deepens our understanding of the unique life cycle of HDV. Impact and implications: Hepatitis D virus (HDV) encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus. This C-terminal extension in L-HDAg confers regulatory roles in the HDV life cycle that are distinct from those of S-HDAg. Herein, we found that C-termini of L-HDAg, although with high sequence variation, are interchangeable among different HDV genotypes. Within the C-terminus of L-HDAg, the prenylation motif, and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly.

10.
Genes (Basel) ; 15(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255005

RESUMO

Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but they are both highly toxic to the environment and stimulate the appearance of bacterial resistance. Herein, we report the molecular characterization and mechanical features of the genome of two newly isolated (putative polyvalent) lytic phages for Psg. The isolated phages belong to class Caudoviricetes and present a myovirus-like morphotype belonging to the genuses Tequatrovirus (PsgM02F) and Phapecoctavirus (PsgM04F) of the subfamilies Straboviridae (PsgM02F) and Stephanstirmvirinae (PsgM04F), according to recent bacterial viruses' taxonomy, based on their complete genome sequences. The 165,282 bp (PsgM02F) and 151,205 bp (PsgM04F) genomes do not feature any lysogenic-related (integrase) genes and, hence, can safely be assumed to follow a lytic lifestyle. While phage PsgM02F produced a morphogenesis yield of 124 virions per host cell, phage PsgM04F produced only 12 virions per host cell, indicating that they replicate well in Psg with a 50 min latency period. Genome mechanical analyses established a relationship between genome bendability and virion morphogenesis yield within infected host cells.


Assuntos
Bacteriófagos , Pseudomonas syringae/genética , Myoviridae/genética , Cobre , Integrases
11.
J Virol ; 98(2): e0159423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289101

RESUMO

The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein precursor (gp160) trimerizes, is modified by high-mannose glycans in the endoplasmic reticulum, and is transported via Golgi and non-Golgi secretory pathways to the infected cell surface. In the Golgi, gp160 is partially modified by complex carbohydrates and proteolytically cleaved to produce the mature functional Env trimer, which is preferentially incorporated into virions. Broadly neutralizing antibodies (bNAbs) generally recognize the cleaved Env trimer, whereas poorly neutralizing antibodies (pNAbs) bind the conformationally flexible gp160. We found that expression of bNAbs, pNAbs, or soluble/membrane forms of the receptor, CD4, in cells producing HIV-1 all decreased viral infectivity. Four patterns of co-expressed ligand:Env were observed: (i) ligands (CD4, soluble CD4-Ig, and some pNAbs) that specifically recognize the CD4-bound Env conformation resulted in uncleaved Envs lacking complex glycans that were not incorporated into virions; (ii) other pNAbs produced Envs with some complex carbohydrates and severe defects in cleavage, which were relieved by brefeldin A treatment; (iii) bNAbs that recognize gp160 as well as mature Envs resulted in Envs with some complex carbohydrates and moderate decreases in virion Env cleavage; and (iv) bNAbs that preferentially recognize mature Envs produced cleaved Envs with complex glycans in cells and on virions. The low infectivity observed upon co-expression of pNAbs or CD4 could be explained by disruption of Env trafficking, reducing the level of Env and/or increasing the fraction of uncleaved Env on virions. In addition to bNAb effects on virion Env cleavage, the secreted bNAbs neutralized the co-expressed viruses.IMPORTANCEThe Env trimers on the HIV-1 mediate virus entry into host cells. Env is synthesized in infected cells, modified by complex sugars, and cleaved to form a mature, functional Env, which is incorporated into virus particles. Env elicits antibodies in infected individuals, some of which can neutralize the virus. We found that antibodies co-expressed in the virus-producing cell can disrupt Env transit to the proper compartment for cleavage and sugar modification and, in some cases, block incorporation into viruses. These studies provide insights into the processes by which Env becomes functional in the virus-producing cell and may assist attempts to interfere with these events to inhibit HIV-1 infection.


Assuntos
Anticorpos Amplamente Neutralizantes , Infecções por HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Neutralizantes , Carboidratos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Polissacarídeos/metabolismo
12.
Structure ; 32(1): 24-34.e4, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37909043

RESUMO

There is a paucity of high-resolution structures of phages infecting Shigella, a human pathogen and a serious threat to global health. HRP29 is a Shigella podophage belonging to the Autographivirinae family, and has very low sequence identity to other known phages. Here, we resolved the structure of the entire HRP29 virion by cryo-EM. Phage HRP29 has a highly unusual tail that is a fusion of a T7-like tail tube and P22-like tailspikes mediated by interactions from a novel tailspike adaptor protein. Understanding phage tail structures is critical as they mediate hosts interactions. Furthermore, we show that the HRP29 capsid is stabilized by two novel, and essential decoration proteins, gp47 and gp48. Only one high resolution structure is currently available for Shigella podophages. The presence of a hybrid tail and an adapter protein suggests that it may be a product of horizontal gene transfer, and may be prevalent in other phages.


Assuntos
Bacteriófagos , Shigella , Humanos , Microscopia Crioeletrônica , Bacteriófagos/química , Shigella/metabolismo , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Proteínas da Cauda Viral/química
13.
Microbiol Spectr ; 12(1): e0274523, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018998

RESUMO

IMPORTANCE: Approximately 257 million people worldwide have been infected with hepatitis B virus (HBV), and HBV infection can cause chronic hepatitis, cirrhosis, and even liver cancer. The lack of suitable and effective infection models has greatly limited research in HBV-related fields for a long time, and it is still not possible to discover a method to completely and effectively remove the HBV genome. We have constructed a hepatocellular carcinoma cell line, HLCZ01, that can support the complete life cycle of HBV. This model can mimic the long-term stable infection of HBV in the natural state and can replace primary human hepatocytes for the development of human liver chimeric mice. This model will be a powerful tool for research in the field of HBV.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Camundongos , Animais , Replicação Viral , Vírus da Hepatite B/genética , Modelos Animais de Doenças , Técnicas de Cultura de Células
14.
Adv Biol (Weinh) ; 8(2): e2300402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840398

RESUMO

The most crucial disadvantage of DNA-based vaccines is their low immunogenicity; therefore, finding an effectual adjuvant is essential for their development. Herein, immunostimulatory effects of IFNγ cytokine and a CD40 ligand (CD40L) costimulatory molecule are evaluated as combined with an antigen, and also linked to an antigen in mice. For this purpose, after preparation of the HIV-1 Nef, IFNγ, and CD40L DNA constructs, and also their recombinant protein in an Escherichia coli expression system, nine groups of female BALB/c mice are immunized with different regimens of DNA constructs. About 3 weeks and also 3 months after the last injection, humoral and cellular immune responses are assessed in mice sera and splenocytes. Additionally, mice splenocytes are exposed to single-cycle replicable (SCR) HIV-1 virions for evaluating their potency in the secretion of cytokines in vitro. The data indicate that the linkage of IFNγ and CD40L to Nef antigen can significantly induce the Th-1 pathway and activate cytotoxic T lymphocytes compared to other regimens. Moreover, groups receiving the IFNγ-Nef and CD40L-Nef fusion DNA constructs show higher secretion of IFNγ and TNF-α from virion-infected lymphocytes than other groups. Therefore, the IFNγ-Nef and CD40L-Nef fusion DNA constructs are suggested to be a potential option for development of an efficient HIV-1 vaccine.


Assuntos
HIV-1 , Vacinas de DNA , Feminino , Animais , Camundongos , Citocinas , Ligante de CD40 , HIV-1/genética , Vacinas de DNA/farmacologia , Vacinas de DNA/genética , DNA
15.
Arch Biochem Biophys ; 752: 109843, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38072298

RESUMO

Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for ß-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.


Assuntos
COVID-19 , Nanoestruturas , Animais , Humanos , Chlorocebus aethiops , SARS-CoV-2 , Células Vero , Proteínas Recombinantes , Amiloide , Proteínas Amiloidogênicas
16.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38076893

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) is a zoonotic pathogen that can cause severe respiratory disease in humans. The new SARS-CoV-2 is the cause of the current global pandemic termed coronavirus disease 2019 (COVID-19) that has resulted in many millions of deaths world-wide. The virus is a member of the Betacoronavirus family, its genome is a positive strand RNA molecule that encodes for many genes which are required for virus genome replication as well as for structural proteins that are required for virion assembly and maturation. A key determinant of this virus is the Spike (S) protein embedded in the virion membrane and mediates attachment of the virus to the receptor (ACE2). This protein also is required for cell-cell fusion (syncytia) that is an important pathogenic determinant. We have developed a pseudotyped herpes simplex virus type 1 (HSV-1) recombinant virus expressing S protein in the virion envelop. This virus has also been modified to express a Venus fluorescent protein fusion to VP16, a virion protein of HSV-1. The virus expressing Spike can enter cells and generates large multi-nucleated syncytia which are evident by the Venus fluorescence. The HSV-1 recombinant virus is genetically stable and virus amplification can be easily done by infecting cells. This recombinant virus provides a reproducible platform for Spike function analysis and thus adds to the repertoire of pseudotyped viruses expressing Spike.

17.
Viruses ; 15(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140681

RESUMO

Bacteria are engaged in a constant battle against preying viruses, called bacteriophages (or phages). These remarkable nano-machines pack and store their genomes in a capsid and inject it into the cytoplasm of their bacterial prey following specific adhesion to the host cell surface. Tailed phages possessing dsDNA genomes are the most abundant phages in the bacterial virosphere, particularly those with long, non-contractile tails. All tailed phages possess a nano-device at their tail tip that specifically recognizes and adheres to a suitable host cell surface receptor, being proteinaceous and/or saccharidic. Adhesion devices of tailed phages infecting Gram-positive bacteria are highly diverse and, for the majority, remain poorly understood. Their long, flexible, multi-domain-encompassing tail limits experimental approaches to determine their complete structure. We have previously shown that the recently developed protein structure prediction program AlphaFold2 can overcome this limitation by predicting the structures of phage adhesion devices with confidence. Here, we extend this approach and employ AlphaFold2 to determine the structure of a complete phage, the lactococcal P335 phage TP901-1. Herein we report the structures of its capsid and neck, its extended tail, and the complete adhesion device, the baseplate, which was previously partially determined using X-ray crystallography.


Assuntos
Bacteriófagos , Lactococcus lactis , Siphoviridae , Siphoviridae/genética , Bacteriófagos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X
18.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38006013

RESUMO

Of all of the components in SARS-CoV-2 inactivated vaccines, nucleocapsid protein (N) is the most abundant and highly conserved protein. However, the function of N in these vaccines, especially its influence on the targeted spike protein's response, remains unknown. In this study, the immunization of mice with the N protein alone was shown to reduce the viral load, alleviating pulmonary pathological lesions after challenge with the SARS-CoV-2 virus. In addition, co-immunization and pre-immunization with N were found to induce higher S-specific antibody titers rather than compromise them. Remarkably, the same trend was also observed when N was administered as the booster dose after whole inactivated virus vaccination. N-specific IFN-γ-secreting T cell response was detected in all groups and exhibited a certain relationship with S-specific IgG antibody improvements. Together, these data indicate that N has an independent role in vaccine-induced protection and improves the S-specific antibody response to inactivated vaccines, revealing that an interplay mechanism may exist in the immune responses to complex virus components.

19.
Front Microbiol ; 14: 1293846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029084

RESUMO

Cyanophages affect the abundance, diversity, metabolism, and evolution of picocyanobacteria in marine ecosystems. Here we report an estuarine Synechococcus phage, S-CREM2, which represents a novel viral genus and leads to the establishment of a new T4-like cyanophage clade named cluster C. S-CREM2 possesses the longest tail (~418 nm) among isolated cyanomyoviruses and encodes six tail-related proteins that are exclusively homologous to those predicted in the cluster C cyanophages. Furthermore, S-CREM2 may carry three regulatory proteins in the virion, which may play a crucial role in optimizing the host intracellular environment for viral replication at the initial stage of infection. The cluster C cyanophages lack auxiliary metabolic genes (AMGs) that are commonly found in cyanophages of the T4-like clusters A and B and encode unique AMGs like an S-type phycobilin lyase gene. A variation in the composition of tRNA and cis-regulatory RNA genes was observed between the marine and freshwater phage strains in cluster C, reflecting their different modes of coping with hosts and habitats. The cluster C cyanophages are widespread in estuarine and coastal regions and exhibit equivalent or even higher relative abundance compared to those of clusters A and B cyanophages in certain estuarine regions. The isolation of cyanophage S-CREM2 provides new insights into the phage-host interactions mediated by both newly discovered AMGs and virion-associated proteins and emphasizes the ecological significance of cluster C cyanophages in estuarine environments.

20.
J Microbiol Immunol Infect ; 56(6): 1121-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919172

RESUMO

BACKGROUND: Vaccine stability is an important issue for vaccine development, which affects whether the vaccine product is effective within a certain period of time in each progress. Hand, foot, and mouth diseases (HFMD) is an epidemic disease in young children usually caused by Enterovirus A group viruses, and the Enterovirus A71 (EV-A71) had caused several pandemics and public health issues around the world. After two decades of research and development, formalin-inactivated EV-A71 (FI-EV-A71) vaccines are the first to complete the phase III clinical trials for protection against EV-A71 infection. Currently, the shelf life of FI-EV-A71 vaccine product is set to be within 18 months, but the stability and the effectiveness of the FI-EV-A71 whole virion when stored long-term at low temperature remains undetermined. METHODS: Assessing the long-term storage properties of viral particles facilitates flexibility in manufacturing of vaccine products. In this study, the stability profiles of FI-EV-A71 vaccine lots and bulks after long-term of low temperature storage were analyzed by protein tests, particle measurement and animal immunization study. RESULTS: After over ten years of storage, the reduction of protein concentration in the FI-EV-A71 bulk samples is less than 30 % and the antigenic content remained in a suspended, particulate state. Both the packed FI-EV-A71 final vaccine products and the FI-EV-A71 antigens adjuvant premix bulk could elicit strong neutralizing responses in mice. CONCLUSION: After ten years of low temperature storage, the FI-EV-A71 vaccine still presents decent stability and good immunogenicity.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Vacinas Virais , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Vacinas de Produtos Inativados , Temperatura , Infecções por Enterovirus/prevenção & controle , Antígenos Virais , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...